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Abstract

Technologies such as hearing aids and cochlear implants do provide useful benefit to a large number of 
individuals with hearing loss, but they are incapable of truly “correcting” a hearing loss. In contrast to these, 
replacement of hair cells via stem cell therapies holds promise for a cure. Despite the discovery of stem/
progenitor cells in the mammalian cochlea, no regeneration of either damaged hair cells or auditory neurons 
has been observed in mammals, in contrast to what is seen in birds and other vertebrates. Transplantation 
of exogenous stem cells has been proposed as a treatment to prevent or reverse sensorineural hearing loss. 
Although there is no clinical trial of stem cell therapies for hair cell regeneration, the research on animal models 
such as rats and mice is promising and is likely to lead to the development of novel therapeutic approaches 
for inducing hair cell regeneration in the mammalian cochlea. We review here current status of adult stem cells 
that are being used for seeding the cochlea for new hair cell formation. Overall, the data are encouraging and 
indicate that the technical problem of how to implant properly primed precursors into the cochlea or modiolus 
for hair cell and sensory neuron replacement is solvable. The main obstacles seem to be the identification of a 
source that provides enough stem cells to allow such therapies to have a good chance of success.
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The 21st century is witnessing an uprising in 
cellular therapy. Stem cell technology is proving to 
be a valuable tool not only for the development and 
regeneration of various tissue and organ systems, 
but also as a unit in evolution by natural selection. 
In the future, medical research anticipates treating 
many diseases including cancers, genetic and 
infectious diseases, diabetes, HIV, hearing loss, and 
heart diseases with the use of gene therapy and stem 
cell technology (Sheridan, 2011; Singec, Jandial, 
Crain, Nikkhah, & Snyder, 2007). Gene therapy 
was first conceptualized in 1972, with the authors 
urging caution before commencing gene therapy 
studies in humans (Friedmann & Roblin, 1972). 
The first FDA-approved gene therapy experiment in 
the United States occurred in 1990, when Ashanti 
DeSilva was treated for X-linked severe combined 
immunodeficiency (Sheridan, 2011). Since then, over 
1,700 clinical trials have been conducted using a 
number of techniques for gene therapy.

A number of adult stem cell therapy techniques 
already exist; particularly bone marrow transplants 
that are used to treat leukemia (Gahrton & 
Björkstrand, 2000) and related bone/blood cancers 
(Bone Marrow Transplant).  Stem cells generated 
through therapeutic cloning have also been proposed 
as promising candidates for future therapies (Totey, 
Totey, Pal, & Pal, 2009; Tuch, 2006).  Thousands of 
patients around the world have already benefited from 
bio-technologies using stem cells, delivered safely 
by skilled physicians. Diseases once considered 

incurable are responding well to stem cell therapies 
and are restoring a quality of life to patients they 
thought they had lost forever.

Here, we will highlight the strengths and weakness 
of various approaches starting with the different 
cellular material with respect to hearing loss. The 
ultimate goal of stem cell therapy for cochlear hair 
regeneration is to achieve restoration of the hearing 
loss. Before embarking on the stem cell therapy it is 
worth spending some time in understanding the role 
of gene therapy in generating hair cell replacement. 

Gene Therapy

Gene therapy has been focused on generating 
replacement hair cells by re-expression of the atonal 
homolog 1 (Atoh1, also known as Math1) gene. 
This gene is essential for hair cell development as 
its targeted disruption in mice results in the absence 
of auditory and vestibular hair cells (Bermingham, 
1999). Virus-mediated gene transfer of Atoh1 into the 
deafened cochlea of adult Guinea pigs resulted in 
improved auditory brainstem responses (Izumikawa, 
2005). Although the extent of hearing improvement 
that is possible with Atoh1 gene transfer in adult 
laboratory animals requires further investigation, it 
is obvious from a number of studies that the Atoh1 
gene is able to convert some types of cochlear cells 
into hair cells (Woods, Montcouquiol, & Kelley, 2004; 
Zheng & Gao, 2000). These Atoh1-induced hair 
cells are functional, at least when the Atoh1 gene is 
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over expressed in a developing cochlea (Gubbels, 
Woessner, Mitchell, Ricci, & Brigande, 2008). The 
major limitation of virus-mediated gene therapy is, 
beside safety concerns, the problem of delivering 
the virus into all regions of the cochlear spiral. An 
injection at the base of the cochlea will very likely 
have effect only on the high frequencies. Treatment 
of middle and lower frequencies will require multiple 
injections at different sites. Opening of the cochlea 
always bears a high risk of doing additional damage, 
and it is inconceivable that utilization of multiple sites 
along the cochlear spiral will be a surgically feasible 
approach in the future, particularly in humans. Beside 
virus delivery obstacles, there is another limitation of 
the approach, which is that the therapeutic agent is 
able to induce so-called ectopic or supernumerary 
hair cells. These additional hair cells that are not 
located at the correct location within the organ of 
Corti do not contribute to proper hearing; instead, 
in all experimental cases investigated thus far, their 
presence is accompanied with profound hearing loss 
(Chen & Segil, 1999; Chen et al., 2003; Lowenheim 
et al., 1999).

Stem cell therapy

Stem cells are “generic” cells characterized by 
undifferentiated potency (totipotent, pluripotent, 
multipotent)  and  self-renewing cells that have the 
capacity to differentiate into any cell type of the 
body given appropriate intracellular gene regulation, 
intercellular communication, and environmental cues.  
The prospect of using specific cell types derived from 
stem cells or from reprogrammed adult somatic cells 
provides a unique opportunity in cell therapy and 
drug discovery for developing novel strategies for 
cochlear repair. Cell-based therapeutic approaches 
for treating  hearing loss caused by disease or injury 
aim to promote structural repair of the injured or 
diseased tissue, an outcome currently not achieved 
by drug therapy. Specific cell types have been 
derived from human embryonic stem cells, induced 
pluripotent stem cells and directly transdifferentiated 
from adult somatic cells, such as skin cells. It is yet to 
be determined if the latter approach will evolve into a 
paradigm shift in the fields of stem cell research and 
regenerative medicine. These multiple sources of 
stem cells cover a wide spectrum of safety that needs 
to be balanced with efficacy to determine the viability 
of the cellular product (Daadi, 2011).

Transplanted stem cells can repair damaged tissues 
either through  triggering  direct differentiation of 
resident stem cells or indirectly by paracrine secretion. 
The latter increases the survival and/or proliferation 
of endogeneous cells  (Bernardo, Locatelli, & Fibbe, 
2009; Lai et al., 2010; Meirelles, Fontes, Covas, & 
Caplan, 2009). Stem cell therapy is budding as a 

prospective therapy for auditory nerve rehabilitation. 
It has been postulated that in the mammalian ear, 
the supporting cell layer may contain progenitor 
cells that could lead to hair cell regeneration. If such 
cells exist, they need to be identified. Furthermore 
it has already been shown that the mammalian 
ear contains cells that have the capacity for self-
renewal and multilineage differentiation, both in vitro 
and after xenograft transplantation into the ears of 
chick embryos developing in ovo (Li, Liu, & Heller, 
2003). On the other hand, the remnant of the once 
powerful regenerative ability can be detected in the 
mammalian adult vestibular sensory epithelia as well 
as in the neonatal cochlea. Particularly, it has been 
possible to isolate self-renewing progenitor cells from 
these organs and to use the progeny of these cells 
to generate hair cell-like cells in vitro and in vivo (Li 
et al., 2003; Oshima et al., 2007; Savary et al., 2007; 
Savary et al., 2008; Senn, Oshima, Teo, Grimm, & 
Heller, 2007; White, Doetzlhofer, Lee, Groves, & 
Segil, 2006; Zhai et al., 2005; Zhang et al., 2007). 
These inner ear derived stem/progenitor cells are 
probably well-suited for proof-of-principle experiments 
aimed to replace lost hair cells in the organ of Corti, 
if the hurdles of cell delivery and proper cell homing 
could be overcome. It has been postulated that a 
population of cells localized in the supporting cell 
layer in mammalian ears may contain progenitor cells 
that could lead to hair cell regeneration. Adult stem 
cells were recently found in the mouse utricle, a part 
of the inner ear involved in balance and motion.

Several stem cell types have now been delivered 
into the inner ear for the replacement of auditory 
neurons, including bone marrow stem cells (Matsuoka, 
Kondo, Miyamoto, & Hashino, 2007; Naito et al. 
2004; Sharif et al., 2007), neural stem cells (Fu et 
al., 2009; Hu et al., 2005; Iguchi et al., 2003; Regala, 
Duan, Zou, Salminen, & Olivius, 2005; Tamura 
et al., 2004; Tateya et al., 2003) and embryonic 
stem cells (Ahn et al., 2008;  Altschuler, O’Shea, & 
Miller, 2008; Coleman et al., 2006; Hu, Ulfendahl, & 
Olivius, 2004a; Lang et al., 2008; Okano et al., 2005; 
Praetorius, Vicario, & Schimmang, 2008; Regala et 
al., 2005; Reyes et al., 2008; Sekiya et al., 2006; Shi, 
Corrales, Liberman, & Edge, 2007). In addition, stem 
or stem-like cells including neural stem cells (Iguchi 
et al., 2003; Tamura et al., 2004; Tateya et al., 2003), 
olfactory bulb precursor cells (Liu et al., 2010; Pandit, 
Sullivan, Egger, Borecki, & Oleskevich, 2011) and 
dorsal root ganglia (Hu, Ulfendahl, & Olivius, 2004b; 
Olivius et.al 2003; Olivius et al., 2004), have been 
used to enhance the survival of endogenous auditory 
neurons, by means of their secretion of trophic factors 
and/or their expression of a supportive protein matrix 
(Figure 1).

Current Status of Stem Cell Therapy JISHA 26 (1), 1-8



3

Embryonic stem cells

Human embryonic stem (hES) cells are pluripotent 
cells derived from the inner cell mass of blastocysts. 
These hESCs are capable of growing indefinitely and  
retaining their potential to differentiate into almost all 
cell types  of the adult body. 

ESCs and induced pluripotent (iPS) cells are 
considered to be the  most  appropriate source of 
stem cells for the development of sensory hair cells

 (Beisel, Hansen, Soukup, & Fritzsch 2008; Brigande 
& Heller, 2009). Embryonic stem cell-derived inner 
ear progenitors have the capability to differentiate into 
hair cell-like cells in any case, either in cell culture 
or when transplanted into embryonic ears. Thus they 
emerge to be highly appropriate for transplantation 
studies.   (Li, Roblin, Liu,  & Heller, 2003). ES cells 
have the potential for self-renewal or regeneration 
that can be accredited to the expression of specific 
genes such as OCT4, NANOG, and SOX2 (Boyer et 
al., 2005).. Deregulation of any or all of these genes 
causes ES cells to lose their pluripotent nature and 
differentiation ability. Prominently, ES cells are more 
prone to immune rejection by the host although 
immunosuppressive therapy can counteract ES cell 
rejection. This decreases the potential to fight against 
opportunistic infections and also leads to several side 
effects such as kidney failure, osteoporosis, diabetes 
and hypertension (Grinnemo, Sylven, Hovatta, 
Dellgren, & Corbascio, 2008). One of the possibilities 
for preventing rejection is by creating embryonic stem 
cells that are genetically identical to the patient via 
therapeutic cloning. The major apprehension with 
ESC transplantation into patients as therapy is their 
ability to form teratoma. (Knoepfler, 2009).  

Apart from ESCs, another source of stem cell gaze is 
induced pluripotent stem cell, which can be generated 
from a patient’s skin. However there are several 
roadblocks which need to be overcome while using 
these stem cell based therapies for curing hearing 
loss. The obstacles which need to be addressed for 
includes finding a suitable surgical access to cochlea 
(as already discussed for gene therapy); establishing 
that the stem cell-derived cells survive, integrate and 
mature at the correct locations (and not at ectopic 
places); and finally, it needs to be ensured that the 

stem cell-derived grafts do not develop into tumors.

Adult stem cells

Adult stem cells, also known as somatic stem cells are 
found throughout the body. They are undifferentiated 
cells which can be coaxed to become different cells 
in the body (heart tissue, neural matter, skin cells 
etc). They can be isolated from different organs of the 
body such as fat, bone marrow, umbilical cord blood, 
placentas, neuronal sources, and olfactory tissue 
which resides in the upper nasal cavity (Banerjee & 
Bhonde, 2007; Jiang et al., 2002; Thiese & Krause, 
2002). This simple fact has significant implications for 
medicine as the infusion of such stem cell can make 
diseased or damaged tissue healthy and robust. 

Adult stem cells from the olfactory mucosa are 
readily accessible by biopsy and exhibit a broad 
differentiation both in vitro and in transpanatation 
settings (McDonald, Mackay-Sim, Crane, & 
Murrell, 2010; Murrell et al., 2005; Murrell, Sanford, 
Anderberg, Cavanagh, & Mackay-Sim, 2009). Several 
researchers have demonstrated that the epithelium of 
the tongue represents an accessible and abundant 
source of adult stem and progenitor cells (Luo, 
Okubo, Randell & & Hogan, 2009; Ookura et al., 2002; 
Okubo, Clark, & Hogan, 2009; Sullivan, Borecki, & 
Oleskevich, 2010). Transplantation of epithelial stem/
progenitor cell into mice with noise induced hearing 
loss resulted in a significantly reduced ABR threshold 
shift to click stimuli. These findings provide evidence 
that epithelial stem/progenitor cell transplantation 
can lessen permanent threshold shifts resulting from 
noise trauma (Sullivan et al., 2010). Previous studies 
have tested for a functional rescue of hearing via adult 
stem cell transplantation in animal models of cochlear 
ischaemia (Hakuba et al., 2005; Yoshida et al., 2007).

Adult stem/progenitor cells have a number of 
advantages for cochlear transplantation in that 
they can be used for autologous transplantation (to 
resist host rejection) and are less tumourigenic than 
embryonic stem cells (Bithell & Williams, 2005). 
Overall, the data are encouraging as they indicate 
that the technical problem of how to implant properly 
primed precursors into the cochlea or modiolus for 
hair cell and sensory neuron replacement is solvable. 
The main obstacles seem to be the identification of a 
source that provides enough stem cells to allow such 
therapies to have a good chance of success.

Mesenchymal stem cells

Mesenchymal stem cells, or MSCs, which are 
found in almost all the postnatal organs are glass 
adherent population of multipotent stem cells having 
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immunomodulatory property. 
The scarcity of stem cells for transplantation calls 

for other alternative sources. MSCs can be derived 
from the human umbilical cord matrix, human 
placenta, bone marrow, human amnion, or human 
breast milk (Kadam & Bhonde, 2010; Kadam, 
Muthyala, Nair, & Bhonde, 2010; Kadam, Sudhakar, 
Nair, & Bhonde, 2010; Patki, Kadam, Chandra, 
& Bhonde, 2010; Phadnis et al., 2011) which are 
good sources of abundant stem cells for treatment. 
MSCs have been identified and characterized by: 
1) their ability to adhere to plastic culture flasks; 2) 
the positive expression of CD105, CD73, CD90 
membrane antigens, and the lack of expression of 
others (e.g. CD45 and CD34) and 3) the ability of 
differentiation under adequate conditions along the 
osteogenic, chondrogenic and adipogenic lineages. 
In recent years, cells with these characteristics have 
been isolated from the Wharton jelly (WJ) of the 
Umbilical Cord (UC). Similar to bone marrow MSCs, 
they have shown multilineage differentiation potential 
and ability to provide trophic support to neighboring 
cells. According to the literature, there are two main 
populations of cells with a mesenchymal character 
within the human UC: Wharton’s Jelly Mesenchymal 
Stem Cells (WJ-MSCs) and Human Umbilical Cord 
Perivascular Cells (HUCPVCs). In the present work 
our aim is to make a comprehensive review on MSC 
populations of the WJ and how these cell populations 
may be used for future applications in central nervous 
system (CNS) regenerative medicine. Following a 
brief insight on the general characteristics of MSC 
like cells, we will discuss the possible sources of 
stem cells within the WJ and the cord itself (apart UC 
blood), as well as their phenotypic character. As it has 
already been shown that these cells hold a strong 
trophic support to neighboring cell populations, we will 
then focus on their secretome, namely the molecules 
that have already been identified within it, and their 
role in phenomena such as immunomodulation 
(Carvalho, Teixeira, Reis, Sousa, & Salgado, 2011). 
The possible application of these cell populations 
to CNS regenerative medicine will be addressed by 
critically reviewing the work that has been performed 
so far in this field. Finally, a brief insight will be 
made on what, in the author’s opinion, are the major 
challenges in the field for the future application of 
these cell populations in CNS regenerative medicine.

Past study has shown the active regeneration of 
cochlear fibrocytes after severe focal apoptosis, 
without any changes in the organ of Corti by the 
transplantation of the MSC derived from bone marrow, 
and with a significant hearing recovery ratio (Kamiya 
et al., 2007). Recent studies suggest that adult 
olfactory stem cells represent a subtype of MSCs 
(Delorme et al., 2010; Pandit et al., 2011). Numerous 

studies have demonstrated that human MSCs avoid 
allorecognition, interfere with dendritic cell and T-cell 
function, and generate a local immunosuppressive 
microenvironment by secreting cytokines (Ryan, 
Barry, Murphy, & Mahon, 2005). It has also been 
shown that the immunomodulatory function of the 
human MSCs is enhanced when the cells are exposed 
to an inflammatory environment characterized by the 
presence of elevated local interferon-gamma levels 
(Ryan, Barry, Murphy, & Mahon, 2007).
		

Future Directions

Identification of a suitable source of MSCs either 
from perinatal tissues like the umbilical cord, amnion, 
placenta or postnatal tissues like dental pulp, adipose 
tissue is of prime importance for targeted delivery of 
cells into the cochlea (Figure 1). It is worth exploring 
the potential of dental pulp stem cells (DPSCs) for 
this purpose as these cells are derived from the 
neural crest. Recently we demonstrated the potential 
of DPSCs to differentiate into insulin producing islet-
like cells (Govinadasamy et al., 2010). As the cochlea 
originates from an embryonic ectoderm similar to 
that of dental pulp, DPSCs appear to be a bonafide 
candidate of choice for cochlear hair cell repair. A team 
work of ENT surgeons and stem cell biologists would 
pave the way for translational research from bench 
to bedside in the area of cochlear hair regeneration. 
Much has been accomplished since the discovery 
of postembryonic hair cell production and hair cell 
regeneration in lower vertebrates. No therapies for 
hair cell regeneration are under clinical trials, but 
research is yielding potentially important discoveries 
that are likely to lead to the development of therapeutic 
methods for inducing hair cell regeneration in the 
mammalian inner ear.
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